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Abstract. In this paper the 2D Helmholtz equation with space-dependent dielectric permittivity
and/or magnetic permeability is considered. The structure of the determining equations for
the symmetry generator is analysed. It allows one to find many nontrivial spatial profiles of
dielectric functions for which one can still separate variables in both the Helmholtz equation and
corresponding Hamilton–Jacobi equation. For the case of the Dirichlet problem of the half-plane
in an inhomogeneous medium the diffractive modes of the field are characterized. Several specific
examples are provided.

1. Introduction

Recently, the problems connected with the propagation of radiation in artificial dielectrics have
become very attractive due to the progress in photonic crystal design [1–6]. The theoretical
questions involved contain, in particular, finding the appropriate modes of the electromagnetic
field and solving problems of scattering of electromagnetic waves in such crystals. The research
in this field deals with both 3D and 2D structures and uses both numerical and analytical
methods.

In this work we study the 2D Helmholtz equation with spatially varying wavenumber from
the point of view of the symmetry analysis of differential equations. This equation is known to
serve as a laboratory for studying methods of mathematical physics, both exact—the foremost
of which is the Wiener–Hopf technique [7,8] for diffraction problems,—and asymptotic [9,10].
Our approach consists of the application of the symmetry analysis of differential equations
in order to perform the separation of variables. Using symmetry generators we show how to
find characteristics of inhomogeneity of the medium (that is, the dielectric function) in which
the waves propagate such that they are compatible with the boundary conditions. Therefore,
the problem of finding appropriate diffractive modes of the wave field can be solved. As an
important example, we shall consider the Dirichlet problem on the half-plane.

The rest of the paper is organized as follows. In section 2, the symmetry of the 2D
Helmholtz equation is investigated. The connection between the dielectric function and the
generators of the algebra of symmetry admitted by this equation is shown. The functions
which determine the generator of symmetry are found to be the real and imaginary parts of an
analytical function. Then, in section 3, we associate several nontrivial dielectric functions with
corresponding symmetries and perform the separation of variables in the Helmholtz equation.
In section 4 we investigate the symmetry of this equation when the dielectric constant depends
on one Cartesian or polar coordinate. In section 5 the Dirichlet problem for the half-plane in
an inhomogeneous medium is considered. Section 6 contains final remarks and conjectures.
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2. Symmetry of variable coefficients in Helmholtz equations

In this paper we apply the methods of point symmetries of differential equations to the
Helmholtz equations. The concept of symmetry belongs to most of the important concepts of
both physics and mathematics. In the case of differential equations, the methods associated
with symmetry are important due to the following reasons [11–15]:

(a) if one finds all the symmetries of a system of partial differential equations one can obtain
new solutions from other solutions found earlier—sometimes it is possible to obtain
important solutions from a very trivial one (for instance, one can obtain the fundamental
solution (propagator) of the free time-dependent Schrödinger equation from the constant
solution);

(b) one can classify the solutions with respect to the symmetry;
(c) in the case of ordinary differential equations, one can effectively decrease the order of the

equation, and sometimes reduce the problem to quadratures (indeed, all known methods to
solve ordinary differential equations are implicit or explicit applications of symmetries);

(d) in the case of linear partial differential equations the symmetries are useful in revealing
and classifying the coordinate systems in which the separation of variables is possible;

(e) in the case of nonlinear partial differential equations the application of the symmetries
often leads to finding special solutions via the so-called symmetry (similarity) reduction;

(f) knowledge of symmetries enables one to find the conservation laws for Lagrangian systems
via Noether’s theorem.

In this paper we shall restrict ourselves to the so-called point symmetries of the Helmholtz
equations. The basic definitions and procedures are described very briefly in the following
paragraphs.

Let xn denote a collection of independent variables and let uα be a set of dependent
variables. Let us consider the one-parameter transformation to new variables x�n =
x�n(xi, uβ; ε), u�α(xi, uβ; ε), where ε is a parameter of the transformation. The corresponding
infinitesimal transformation

x�n = xn + εξn(xi, uβ) + · · · (1)

and

u�α = x�α + εχα(xi, uβ) + · · · (2)

are generated by the operator

X =
∑
n

ξn(xi, uβ)
∂

∂xn
+
∑
α

χα(xi, uβ)
∂

∂uα
. (3)

We are not able to say anything about the symmetry of a differential equation if we do not
know how the partial derivatives of uα with respect to xn transform under the action of the
transformation given by (1) and (2). That is, we have to compute the prolongation or extension
of the transformation to derivatives of dependent variables. At this point, it is very convenient
to introduce the operator of the total derivative:

D

Dxn
= ∂

∂xn
+ uα

,n

∂

∂uα
+ uα

,nm

∂

∂uα
,m

+ · · · (4)

where uα
,n = ∂uα/∂xn etc. With the help of the total derivative we can write the differentials

of independent and dependent variables in a simple form:

du�α =
(
∂uα

∂xi
+ ε

Dχα

Dxi

)
dxi + · · ·

dx�n =
(
δnm + ε

Dξn

Dxm

)
dxm + · · ·

(5)
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from which it follows that

∂u�α

∂x�n
= uα

,i + ε
Dχα

Dxi + · · ·
δnm + ε

Dξn

Dxm + · · · δ
i
m = uα

,n + ε

(
Dχα

Dxn
− uα

,i

Dξ i

Dxn

)
+ · · · . (6)

On the other hand, for the infinitesimal transformation of first derivatives we should have
a formula similar to (2), that is

u�α
,n = uα

,n + εχα
n + · · · (7)

which means that

χα
n = Dχα

Dxn
− uα

,i

Dξ i

Dxn
= D

Dxn
(χα − uα

,iξ
i) + ξ iuα

,in. (8)

The infinitesimal transformations (1)–(7) are generated by the extended or prolonged
infinitesimal operator (generator) X(1):

X(1) =
∑
n

ξn(xi, uβ)
∂

∂xn
+ χα(xi, uβ)

∂

∂uα
+
∑
n,α

χα
n (x

i, uβ, uβ
,n)

∂

∂uα
,n

(9)

where χα
n is given by (8). The superscript (1) on X in (9) means that it is the infinitesimal

generator prolonged to first derivatives. In a very similar way we define the second prolongation
(extension) of the generator:

X(2) = X(1) +
∑
α,n,m

χα
nm

∂

∂uα
,nm

(10)

where the functions χα
nm can be obtained from the differential du�α

,n :

du�α
,n = d(uα

,n + εηα
n + · · ·) =

∑
m

(
uα
,nm + ε

Dχα
n

Dxm
+ · · ·

)
dxm.

We obtain

χα
nm = Dχα

n

Dxm
−
∑
i

uα
,ni

Dξ i

Dxm
(11)

or

χα
nm = D

Dxm

(
χα
n −

∑
i

uα
,niξ

i

)
+
∑
i

ξ iuα
,inm. (12)

Higher-order prolongations are calculated via the transformed higher-order differentials. We
are now ready to define the symmetry of a system of differential equations. Let

�(ya) = 0 ya = {xi, uα, uα
,i , u

α
,ik} (13)

be such a system. A point (or Lie) symmetry of the system is such a transformation

y�a = y�a(yb; ε) (14)

which is an extension of the derivatives of a point transformation (1), (2), and which maps
solutions of (13) to (other) solutions. That is, if ya is a solution of � = 0 then �(y�a) = 0
also holds for all values of ε. It has been proved in, e.g., [11, 12] or [13], that the necessary
and sufficient condition for a transformation to be a symmetry is the equality

X(N)�|�=0 = 0 (15)

provided that the so-called maximal rank condition is fulfilled by �. This condition is
equivalent to the statement that not all derivatives of � can vanish on � = 0. In the above
equation N denotes the order of the highest-order equation contained in the system �. Let us
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stress that the expression X(N)(�) has to vanish only in the subspace of solutions � = 0 and
not everywhere. Equation (15) provides the effective method to find the point symmetries.
They are called ‘point’ (or ‘Lie’) symmetries since the functions ξ and χ in (3) depend on the
independent and dependent variables but not on the derivatives of u (X is thus ‘local’). If X
(itself and not only its prolongations) is allowed to contain the derivatives of u with respect
to x, we say that � possesses higher or generalized or Lie–Baecklund symmetries [12, 13].
These higher symmetries will not be used in this paper, however.

After computing the N th prolongation of X and writing (15) in a form specific to the
given system, we obtain a linear overdetermined system of differential equations for various
derivatives of ξ and χ contained in X(N). These equations are called determining equations.
Usually, writing down and solving them is not very difficult but extremely laborious and tedious.
In connection with this, several computer programs have been developed which enable us to
write down, simplify, and sometimes solve the determining equations. It is important to note,
however, that for the case of linear systems there exists a much simpler, though equivalent,
method for determining symmetry. Indeed, let L be the linear differential operator such that

L(u(x, y)) = 0 (16)

is the equation the symmetries of which we are looking for. Let X be the generator of a
symmetry; it is again a partial differential operator. Since it has to transform solutions of (16)
into (other) solutions, it must be true that

L(X(u(x, y))) = 0. (17)

This means that the operatorsL andX must commute on the space of solutions to equation (16).
This statement can also be expressed as a commutator equality:

[L,X](f (x, y)) = r(x, y)L(f (x, y)) (18)

where f (x, y) is an arbitrary function differentiable sufficiently many times. While the general
Lie method outlined above only allows one to seek the first-order symmetry operators—which
enjoy the property of being members of a Lie algebra—solving the commutator equation (18)
allows one to find the higher-order (i.e., expressed by operators of the order higher than
one) symmetries as well. These higher-order operators do not in general, however, form a
Lie algebra. In practice, one usually restricts oneself to the case of first- and second-order
symmetries. If X is a first-order symmetry, then r(x, y) is simply a function of x and y. If X
is of second order, then r(x, y) is a first-order operator. In both cases r(x, y) is established in
the process of finding X. If X is a first-order symmetry generator, it can be written as

X =
∑
α

(
ξα

∂

∂xα
+ ψα

)
. (19)

It acts in the xα space. The corresponding generator obtained with the help of the Lie method
is given by ∑

α

(
ξα

∂

∂xα
− ψαu

∂

∂u

)
(20)

and it acts in (xα, u) space.
Let us consider the following Helmholtz equation describing a stationary wave motion in

two spatial dimensions:

∂2u

∂x2
+

∂2u

∂y2
+ k2

0σ(x, y)u = 0 (21)

where u is a wavefunction (it can be, for instance, the z component of the electric
field of a transverse-magnetic wave propagating in two dimensions), k0 = a0ω/c with
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ω being the frequency and c the phase velocity of waves, while σ(x, y) is a function
describing macroscopically the properties of the medium in which the waves propagate; in the
electromagnetic case σ(x, y) = ε(x, y)·µ(x, y). In what follows, σ will be called the dieletric
function since usually we have to deal with nonmagnetic natural or artificial materials. It is
assumed that the natural wavelength 2πc/ω0 is much larger than both the dimensions of, and
distances between, the scatterers which the artificial dielectric is made of. The parameter a0 is
of the dimension of length and has been introduced to make the variables x, y, r dimensionless.

Let us investigate the symmetries of the Helmholtz equation (for constant σ they have
been obtained in [14]). There are two independent variables and one dependent variable.
We have x1 = x, x2 = y, ξ 1 = ξ , ξ 2 = η, u1 = u, χ1 = χ . The variables ξ and η

characterize explicitly how the coordinates change if a particular reference frame is changed
from one to another. The function χ shows the corresponding change of the physical field.
The infinitesimal symmetry generator X has the form:

X = ξ(x, y, u)
∂

∂x
+ η(x, y, u)

∂

∂y
+ χ(x, y, u)

∂

∂u
. (22)

Its prolongations have been obtained from equations (8) and (12). Employing, e.g., the
Mathematica package lie.m we get a system for determining equations for ξ , η, χ . From this
system it follows that ξ and η do not depend on u, and that χ is equal to χ0(x, y) + au, where
χ0(x, y) is an arbitrary solution to the Helmholtz equation (the trivial symmetry connected
with χ0 expresses the superposition principle; it will not be of any use here), and a is an
arbitrary constant. Besides, the functions ξ and η have to fulfil the following equations:

ξx(x, y) = ηy(x, y) (23)

ξy(x, y) = −ηx(x, y) (24)

ξσx + ησy = −2ξxσ = −2ηyσ (25)

where the subscripts denote partial derivatives, e.g., ηy = ∂η

∂y
. The same results follow—still

simpler—from equation (18) (except for the trivial symmetry expressing the superposition
principle).

It is thus clear that ξ and η satisfy the Cauchy–Riemann equations which means that they
are the real and imaginary parts of an analytical function. Let us also note that it is ξ and
η which play a key role in both the mathematics and physics of the wave propagation since
χ = χ0 +au has the same form for all possible refractive indices. For given σ , equations (23)–
(25) give an overdetermined system from which ξ and η can be calculated. It is possible and
interesting, however, to proceed in an opposite direction. That is, one may first choose an
analytical function, extract its real and imaginary parts, prescribe in this way the symmetry
of the problem, and find the corresponding family of allowed σ . A similar procedure can
be encountered in geometrical (Hamiltonian) optics. For instance, in the design of optical
instruments one is often interested in getting some peculiar properties of images of canonical
objects. As an example, one can look for such a medium (i.e. such a refractive index) that the
geometro-optical image of a ball is also a ball (located in the image space) [16, 17]; or, one
can ask what the dielectric constant of the medium must be in order to be assured that all the
rays crossing a given point (x0, y0) will also cross themselves at an conjugate point (x1, y1).
These and related problems have been solved, e.g., in a book by Luneburg [16]. Their solutions
consist of the characterization of σ(x, y) by the specification of certain symmetry of solutions
in terms of geometrical optics.

Here we deal with (2D) wave optics, and the symmetry of the system is most easily
described in terms of the infinitesimal operators containing the information as to what kind of
transformation, compared with other reference frames, leaves the system invariant.
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On the other hand, it is also important to know the symmetry of the Helmholtz equation
corresponding to a given family of refractive indices. In section 4 we discuss two examples
which include Luneburg’s solutions mentioned above and show their meaning from the point
of view of symmetry.

The possibility of solving equation (25) for σ depends on our ability to solve the following
system of ordinary differential equations related to (25):

dx

ξ(x, y)
= dy

η(x, y)
= − dσ(x, y)

Rσ(x, y)
(26)

where R = 2ξx = 2ηy = ξx + ηy . Below we give several simple examples of analytical
functions for which it is easy to solve (26). After finding σ , we may also try to find the
invariant form &(x, y) of the infinitesimal generator X [13] which is defined by

X(u − &(x, y))|u=&(x,y) = 0. (27)

The invariant form& is an eigenfunction of the operator ∂
∂t

which is obtained by ‘straightening’
the operator X1 = X − χ ∂

∂u
. The straightening can be achieved by solving the system [11]:

X1s(x, y) = 0 (28)

X1t (x, y) = 1. (29)

The variables s = s(x, y) and t = t (x, y) obtained by solving equations (28) and (29) are
simply new—‘good’, or ‘symmetry-adapted’—coordinates; the Helmholtz operator written in
terms of them allows the separation of variables. Before we consider several examples, let
us mention that in many cases it is more convenient to start from the polar coordinates (r, φ)

instead of (x, y). Then the Helmholtz equation reads

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂φ2
+ k2

0σ(r, φ)u = 0. (30)

If we write the infinitesimal generator X′ as

X′ = rζ1
∂

∂r
+ ζ2

∂

∂φ
+ (χ0 + au)

∂

∂u
(31)

where χ0 is an arbitrary solution of the Helmholtz equation (30), we find that ζ1 and ζ2 again
satisfy the Cauchy–Riemann equations:

ζ1r = 1

r
ζ2φ (32)

ζ2r = −1

r
ζ1φ (33)

so that they are the real and imaginary parts of an analytical function. In addition, these
functions together with σ(r, φ) have to satisfy the equation

rζ1σr + ζ2σφ = −2σ

(
ζ1 +

∂ζ2

∂φ

)
. (34)

The following remark should be noted here. Usually, if we allow the coefficients of a linear
partial differential equation to vary, this results in a spoiling of the symmetry, except in some
very particular cases. However, for the Helmholtz equation the family of these ‘particular cases’
is very large and we may associate fairly unexpected and counter-intuitive symmetry generators
with an amazingly large collection of σ . This is in contrast to the case of, e.g., the time-
dependent Schrödinger equation. In one spatial dimension, the time-dependent Schrödinger
operator admits just four potentials for which nontrivial point symmetry exists; these are the
constant, the linear, the harmonic and the inverse-square potentials. In two spatial dimensions
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the number of point-symmetry-admitting potentials reduces to three. Now, the number of
dielectric constants for which the Helmholtz operator admits a nontrivial point symmetry is
uncountable. Also, we shall see that with a given one-parameter symmetry generator which
satisfies the conditions (23)–(25) or (32)–(34) one may associate many different dielectric
functions such that the separation of the variables is possible.

3. Examples of the symmetries and related dielectric function

Let us start with the simplest possible case: our analytical function w(z) = ξ(x, y)+ iη(x, y),
where z = x + iy, is linear, i.e.,

w = z0 + biz (35)

where z0 is an arbitrary complex constant and b is an arbitrary real parameter. Then

ξ = ξ0 − ay η = η0 + ax. (36)

This defines a three-parameter (ξ0, η0, a) symmetry algebra of the Helmholtz equation
generating the 2D Euclidean group E(2). We immediately realize that the corresponding
σ must be a constant. This example has been elaborated in great detail in a fundamental
book by Miller [14]. Below in this section we shall concentrate mainly on the one-parameter
transformations.

As our first example, let us consider another simple holomorphic function w(z) = z. Then
ζ1 = r cosφ, ζ2 = r sin φ. Let us first find the ‘good’ variables s and t .

Solving first the system

dr

r2 cosφ
= dφ

r sin φ
(37)

we find s = -(sin φ/r) where - is an arbitrary differentiable function of its argument. The
simplest choice of - is -(x) = x, i.e., s = sin φ/r . This solution is thus not unique:
equation (37) has infinitely many solutions, but they all are (arbitrary) functions of s.

Then we solve the equation

dr

r2 cosφ
= dφ

r sin φ
= dt (38)

to find that t is given by an implicit relation: .(s, t+cosφ/r) = 0, where. is again an arbitrary
differentiable function of its two arguments. Again, the simplest choice is t = − cosφ/r . One
can immediately realize that the lines of constant s and constant t are orthogonal in the plane.
The above-mentioned non-uniqueness of solutions of equations (37), (38) allows for some
flexibility in choosing appropriate (s, t).

The invariant form &(r, φ) is then given by

&(r, φ) = exp(ilt)f (s) (39)

where l is a so far arbitrary (separation) constant. Substituting u = &(s(r, φ), t (r, φ)) into the
Helmholtz equation (21) we obtain the following differential equation for f (s):

f ′′(s) + (k2
0σr

4 − l2)f (s) = 0. (40)

It is thus clear that we achieve the separation of variables if it is possible to eliminate σr4 in
favour of s.

Let us check the admissible dielectric functions using equation (34). We solve

dr

r2 cosφ
= dφ

r sin φ
= − dσ

4σr cosφ
(41)
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and find the solution for σ in the implicit form

.(s, σ r4) = 0 (42)

where . is an arbitrary smooth function of its two arguments. Equation (42) can be used
to eliminate the term σr4 from equation (40) if we can explicitly solve (42) to get σr4 as a
function of s.

To be more specific, let us consider three subcases. Let, for example, σ = σ0/r
4. Then,

from (39), (40) we obtain the following solution of the Helmholtz equation:

u = ul = exp (−il cosφ/r)

[
Al sin

(√
k2

0σ0 − l2s

)
+ Bl cos

(√
k2

0σ0 − l2s

)]
. (43)

The general solution is obtained by integrating over l. This solution may serve as an
alternative to the standard Bessel-function solution in terms of 1/r .

To obtain a closer look at the way the separation of variables by symmetry works, let us also
consider the Hamilton–Jacobi equation corresponding to equation (21) with σr4 = σ0α(s),
which results from solving the implicit relation (42). Thus, let us try to solve approximately
the Helmholtz equation in terms of the Luneburg–Kline series:

u ≈ exp[ik0(A(0) + k−1
0 A(1) + k−2

0 A(2) + · · ·)]. (44)

Expanding and keeping only the terms of the highest order in k0 we obtain the Hamilton–
Jacobi equation which is the basic mathematical formula for expressing the geometro-optical
approximation:(

∂A(0)

∂x

)2

+

(
∂A(0)

∂y

)2

= σ(x, y). (45)

Let us write simply A instead of A(0). This function is usually called an eikonal. Now
let σ = r−4σ0α(s). Using the Helmholtz equation, we find that in terms of new, symmetry-
adapted variables s and t , the Hamilton–Jacobi equation for the eikonal acquires the trivial
form

A2
s + A2

t = σ0α(s) (46)

where As = ∂A/∂s, At = ∂A/∂t . The corresponding Hamiltonian is

H = p2
s + p2

t − σ0α(s) (47)

where ps and pt are the momenta canonically conjugated to s and t . In the case of α(s) = 1
we can easily solve the corresponding Hamilton equations:

ds

dτ
= ∂H

∂ps

dps

dτ
= −∂H

∂s
(48)

and
dt

dτ
= ∂H

∂pt

dpt

dτ
= −∂H

∂t
(49)

where τ is a parameter along the ray. Upon solving these equations the variable τ may be
eliminated in terms of s and t so that we find the equation of the ray trajectories:

(t − t0) = pt0

ps0
(s − s0) (50)

where s0 and t0 just specify where we start to draw the ray, while ps0 and pt0 depend on
the ‘initial’ value of the eikonal A = A0 on the subset Y of the plane from which the rays
start, ps0 = ∂A0

∂s0
, pt0 = ∂A0

∂t0
. The coordinates (s0, t0) also serve to label the points in Y . On

expressing t and s in terms of, say, Cartesian coordinates, we realize that the ray trajectories
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are either circles or straight lines depending on the subspace of initial ‘positions’ (s0, t0) and
on A0. In the case of ps0 = 0 equation (50) becomes meaningless, but in this case the ray is
just a line of constant s. Thus, the ‘good’, symmetry-adapted variables s, and t are proved to
be useful in geometrical optics as well.

As a second subcase let us briefly consider σ = σ0 sin φ/r5. Then the mode functions
u = ul take the form

ul = exp

(
−il

cosφ

r

)[
AlAi

(
l2 − k2

0σ0s

(−k2
0σ0)2/3

)
+ BlBi

(
l2 − k2

0σ0s

(−k2
0σ0)2/3

)]
(51)

where Ai and Bi are Airy functions.
The Hamilton–Jacobi here takes the form

A2
s + A2

t = σ0s (52)

so that the equation of a ray trajectory is quadratic:

s = s0 + 2ps0
t − t0

2pt0
+ 2σ0

(
t − t0

2pt0

)2

(53)

only if pt0 
= 0. If, on the other hand, pt0 = 0 then the rays are simply the curves of constant
t .

The other subcase for which we can obtain the mode functions explicitly in terms of known
special functions is σ = σ0s

−2 = σ0r
2/ sin φ. Then

ul = exp

(
−il

cosφ

r

)√
s(AlI−µi(ls) + BlIµi(ls)) (54)

where I±µi(ls) are the modified Bessel functions and µ = 1
2

√
4k2

0σ0 − 1. The Hamiltonian
function for the corresponding geometro-optical problem reads

H = p2
s + p2

t − σ0/s
2. (55)

The Hamilton equations are again solvable (the equations for s and ps are integrated by
the ‘energy’ integral) and result in the equations for trajectories (rays):

t − t0

2pt0
= ±1

2
√
σ0

√
1 + c1s2

c1
+ c2 (56)

where c1 and c2 are arbitrary constants.
As a second example let us consider the Zhukovski function w(z) = 1

2 (z + 1
z
) so that

ζ1 = 1
2 (r + 1

r
) cos(φ), ζ2 = 1

2 (r − 1
r
) sin(φ). Let us determine s and t . First we solve the

system

dr

r 1
2 (r + r−1) cosφ

= dφ
1
2 (r − r−1) sin φ

(57)

to obtain the solution

s = -(r sin φ/(r2 + 1)) (58)

where - is an arbitrary function. It is convenient to choose s = r sin φ/(r2 + 1) =
y/(x2 + y2 + 1). Taking advantage of this s on intermediate steps of the calculation, we
solve the equation for t :

1

2
(r2 + 1) cosφ

∂t

∂r
+

1

2
(r − r−1) sin φ

∂t

∂φ
= 1, (59)
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the result being t = arctan( r2−1
2r cosφ ) = arctan( x

2+y2−1
2x ). Writing u as a product exp(ilt)f (s)

we obtain the following equation for the function f (s):

f ′′(s) +
8s

4s2 − 1
f ′(s) −

(
k2

0σ(1 + r2)2

4s2 − 1
+

4l2

(4s2 − 1)2

)
f (s) = 0. (60)

Equation (60) will become an ordinary differential equation forf (s) provided thatσ is such that
the termσ(1+r2)2 can be eliminated in favour of some function of s, that is, σ(1+r2)2 = σ0α(s).
Let us check this conclusion by investigation of equation (34) for σ . We have

1

2
r(r + r−1) cosφ

∂σ

∂r
+

1

2
(r − r−1) sin φ

∂σ

∂φ
= −2σr cosφ. (61)

The solution is

.(s, σ (r2 + 1)2) = 0 (62)

where . is an arbitrary function of two variables. The conclusion drawn from equation (60)
is thus confirmed.

The Hamilton–Jacobi equation corresponding to the Zhukovski function is somewhat more
complicated than in the previous examples. In terms of the symmetry-adapted variables s and
t it reads

A2
t + 1

4 (1 − 4s2)2A2
s = σ0(1 − 4s2)α(s). (63)

Nevertheless, it again allows for the trivial separation of variables (A = A1(s) + A2(t))
and the rays again can be found in terms of elementary functions if α = 1. In the case of
α(s) = s or α(s) = s2 we have to use the elliptic integrals when trying to solve the Hamilton
equations for the s variable.

It seems that the simplest α(s) is at the same time the most interesting and important.
Indeed, let α(s) = 1. Then the profile of the dielectric function is rather well known:

σ(r) = σ0

(1 + r2)2
. (64)

This is the dielectric function of the Maxwell fish-eye medium. Let us now ask the
question of how large the symmetry algebra of the Helmholtz equation for this σ is. From
the determining equations (32) it follows that if ζ1 is nonzero, then it satisfies (prime denotes
differentiation over r)

rζ1

[
σ0

(1 + r2)2

]′
= −2(ζ1 + rζ1r )

σ0

(1 + r2)2

from which it follows that

dζ1

ζ1
= 1

r

r2 − 1

r2 + 1
dr

so that

ζ1 = C(φ)(r + 1/r).

Making use of the Cauchy–Riemann equations (32) and (33) we find that C(φ) has to
satisfy the harmonic-oscillator equation

C ′′(φ) + C(φ) = 0.

Therefore, C(φ) = A cos(φ)+B sin(φ). For vanishing ζ1 we have simply ζ2 = const, since the
Cauchy–Riemann equations must still be fulfilled. We have thus realized that the Helmholtz
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equations with the Maxwell fish-eye profile of the dielectric functions allow the four-parameter
symmetry Lie algebra with the generators:

X1 = (r + r−1) cosφ
∂

∂r
+ (r − r−1) sin φ

∂

∂φ

X2 = (r + r−1) sin φ
∂

∂r
− (r − r−1) cosφ

∂

∂φ

X3 = ∂

∂φ

X4 = u
∂

∂u

(65)

where the trivial symmetry corresponding to the superposition principle has been ignored.
Using the first three generators, the first two of them being not ‘obvious’, we obtain
separation of the variables. It is to be noted that, unfortunately, the slightly more ‘realistic’
σ(r) = 1 + σ0/(1 + r2)2 allows for only two generators (namely X3 and X4 of (65)), hence
the variables can be separated only in the cylindrical system of coordinates (as far as we deal
with the first-order symmetry operators).

Let us return for a moment to equation (60) with α(s) = 1. By writing f (s) =
g(s)/

√
1 − 4s2 (− 1

2 < s < 1
2 ), we obtain the formula

g′′(s) +
4(1 − l2) + k2

0σ0(1 − 4s2)

(4s2 − 1)2
g(s) = 0. (66)

The solution to (66) can be expressed in terms of the hypergeometric 2F1 function [18].
As a next example, let us now try the exponential function w(z) = ez. We shall work

here with the functions ξ , η defined in Cartesian coordinates. We obtain ξ = eax cos(ay),
η = eax sin(ay), the invariants are s = e−x sin y, t = −e−x cos y, the invariant form
&(x, y) = exp(−ile−x cos y)f (e−x sin y). The function f (s) has to satisfy the equation

f ′′(s) + (k2
0σe2x − l2)f (s) = 0 (67)

and σ is given by the following solution to equation (26):

.(s, σe2x) = 0. (68)

If σ is such that the relation (68) can be explicitly solved so that σe2x = σ0α(s), we obtain
the ordinary differential equation for f (s):

f ′′(s) + (k2
0σ0α(s) − l2)f (s) = 0. (69)

Again, in favourable cases it can be solved in terms of known special or even elementary
functions. In particular, let us take α(s) = s−2 which means that σ = σ0/(sin y)2. The
solution can be written in terms of the Bessel functions

f (s) = √
s(AlI−iν(ls) + BlIiν(ls)) (70)

where ν = ( 1
2 )

√
4k2

0σ0 − 1.
The fourth elementary complex function which will be examined is the logarithmic one,

w(z) = log(z). Taking into account the principal branch we write ζ1 = log(r), ζ2 = φ. The
symmetry-adapted variables are now s = log(r)/φ, t = log(log(r)).

The dielectric function σ which corresponds to the symmetry determined by ζ1 and ζ2

belongs to the family specified by the equation

.(s, σ (r log(r))2) = 0. (71)

It is convenient now to write down the invariant form as

&(s, t) = exp(lt)f (s) = log(r)lf (s). (72)
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Substitution of & for u in the Helmholtz equation leads to the following expression:

f ′′(s) + 2
l + s2

s(1 + s2)
f ′(s) +

k2
0σr

2 log(r)2 + l(l − 1)

s2(1 + s2)
f (s) = 0. (73)

In the simplest (and this time not very interesting) case σr2 log(r)2 = σ0 the solution can
again be expressed in terms of the hypergeometric 2F1 function.

Let us once again assume that σ is such that equation (71) can be solved explicitly, so that
σr2 log(r)2 = σ0α(s). Then the Hamilton–Jacobi equation is derived in the form

s2(1 + s2)A2
s + A2

t + 2sAsAt = k2
0σ0α(s) (74)

while the corresponding Hamiltonian is

H = s2(1 + s2)p2
s + p2

t + 2spspt − k2
0σ0α(s). (75)

Now, the Hamiltonian function contains the product of ps and pt , which was absent in
the previous examples, and the separation of variables in the Hamilton–Jacobi equation is not
automatic. Nevertheless, the Hamiltonian does not depend on t , which still makes it possible
to solve the Hamilton equations at least in an implicit form, since the solution for pt is very
simple.

Let us finally consider the hyperbolic function w(z) = cosh(z). Then ξ =
cosh x cos y, η = sinh x sin y. The symmetry-adapted variables are s = sin y/ cosh x,
t = arctan[sinh(x)/ cos y]. The admissible σ must satisfy

.(s, σ cosh2(x)) = 0. (76)

The function f (s) is now a solution to the equation

f ′′(s) +
2s

s2 − 1
f ′(s) −

(
l2 + k2

0(s
2 − 1) cosh2(x)σ

(s2 − 1)2

)
= 0. (77)

It is again clear that σ cosh2(x) must be equal to σ0α(s) in accordance with (76).
The simple case of α = 1 is again distinguished since the resulting dielectric constant is

one of those which characterize the so-called perfect optical instrument [16]. In this case we
can obtain the general solution to equation (77) in terms of Legendre functions:

f (s) = AlP
ν
l (s) + BlQ

ν
l (s) (78)

where ν =
√

4k2
0σ0 + 1 − 1.

The Hamilton–Jacobi equation also takes the separable form

(1 − s2)2A2
s + A2

t + σ0(s
2 − 1) = 0. (79)

As in the case of the Maxwell fish-eye profile, let us ask about the most general continuous
transformation which leaves the Helmholtz equations with the squared hyperbolic secant profile
of σ invariant, and which is expressible in terms of the first-order differential operators. The
solution to equations (24)–(26) is straightforward and leads to the conclusion that the algebra
of invariance of these equations is spanned by the following generators:

X1 = cosh(x) sin(y)
∂

∂x
− sinh(x) cos(y)

∂

∂y

X2 = cosh(x) cos(y)
∂

∂x
+ sinh(x) sin(y)

∂

∂y

X3 = ∂

∂y

X4 = u
∂

∂u
.

(80)

The first two generators provide a tool for the nontrivial and perhaps somewhat amazing
separation of variables, one of which has been provided above.
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4. Symmetry properties in the case of σ depending on one Cartesian or cylindrical
coordinate

In many cases σ is a function of x (y), or r (φ) only. Let us look for such σ that an interesting
symmetry is admitted. By ‘interesting’ we mean a symmetry the generator of which does not
reduce to the form ∂

∂x2
when σ depends on x1 only; here x1 and x2 are members of the pairs

(x, y), or (ρ, φ).
First, let σ depend only on x and not on y. Our goal is to find such σ , that the symmetry

algebra is reached other than generated by X3 = ∂
∂y

, X4 = ∂
∂u

. Integrating equation (25) we
obtain

ξ(x, y) = h(y)√
σ(x)

(81)

with the function h(y) to be determined. Substituting the above expression into the Laplace
equation which ξ must obey as the real part of a holomorphic function, we obtain

4σ 2(x)h′′(y) + h(y)(3σ ′2(x) − 2σ(x)σ ′′(x)) = 0. (82)

We can separate variables in this equation. Let ν2 be the separation constant, where ν is
an arbitrary real or imaginary parameter. Then we obtain for h(y)

h(y) = a sin(νy) + b cos(νy) (83)

while σ(x) satisfies the equation

2σ(x)σ ′′(x) − 3σ ′2(x) + 4ν2σ 2(x) = 0, (84)

the solution of which is

σ(x) = −4C1ν
2 1

cosh2(ν(x − C2))
(85)

where C1 > 0. We realize that, for real ν, the coefficients a and b in (83) must be purely
imaginary since both ξ and σ have to be real. From equations (83)–(85) we infer that for
specific values of σ(x) given by (85) we indeed obtain ‘interesting’ symmetry generators:

X1 = (cosh(ν(x − c)) cos(νy))
∂

∂x
+ (sinh(ν(x − c)) sin(νy))

∂

∂y

X2 = (cosh(ν(x − c)) sin(νy))
∂

∂x
− (sinh(x − c) cos(νy))

∂

∂y

(86)

where ν and c are arbitrary constants.
Let us now concentrate on the case of polar coordinates. We allow σ to be a function of r

but not of φ. Then we realize that ∂/∂(r)(log(rζ1)) is a function of r only, which means that
ζ1 is a product:

ζ1 = a(r)b(φ) (87)

with

a(r) = 1

r
√
σ(r)

. (88)

The function ζ1, being the real part of a holomorphic function, must satisfy the Laplace
equation. If we take the Laplacian of (87), substitute (88), and separate variables in the resulting
equation, we obtain

b′′(φ) + ν2b(φ) = 0 (89)

for b(φ). On the other hand, σ(r) has to satisfy the following differential equation:

(4 − 4ν2)σ 2(r) + 3r2σ ′2(r) + 2rσ (r)(σ ′(r) − rσ ′′(r)) = 0. (90)
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In the two equations above the parameter ν can be (arbitrary) real or imaginary. The solution
to this equation may be conveniently written as

σ(r) = C2

r2 cosh2[C1 − ν log(r)]
. (91)

The function b(φ) is given by

b(φ) = A sin(νφ) + B cos(νφ). (92)

The only constraint imposed on A and B is that the function b(φ) be real.
A very interesting special solution to equation (90) is obtained by putting C1 = 0 in (91).

Indeed, writing 4C2 = σ0 we get

σ(r) = σ0
r2ν−2

(1 + r2ν)2
(93)

with the corresponding refractive index n(r), (σ(r) = n2(r))

n(r) = n0
rν−1

1 + r2ν
.

One can recognize in this family of n(r) the profiles, parametrized by ν, which correspond
to the so-called perfect optical instruments, that is, such instruments that for every point in the
plane there exists a perfect conjugate point [16]. Thus, we again find a connection between
the symmetries of the Helmholtz equation and geometrical optics.

5. Diffractive modes for the half-plane problem: inhomogeneous media

In this section we shall find the mode decomposition of the field u for the (Dirichlet) problem
of diffraction on the perfectly reflecting half-plane in the medium with variable dielectric
function (or variable potential for the corresponding quantum mechanical problem). Detailed
calculations will be given for the case of the Maxwell fish-eye medium. To begin with, let
us recall some basic definitions from [13]. The infinitesimal generator X is admitted by the
boundary value Dirichlet problem if it leaves invariant the differential equation itself, the
equation for the boundary manifold and the boundary condition on the boundary manifold.
Our boundary manifold is very simple:

φ − 2nπ = 0 (94)

for any integer n. The boundary condition to be satisfied is

u = 0 (95)

on φ = 0 and φ = 2π . This means that for all r we must have

ζ2(r, 0) = ζ2(r, 2π) = 0. (96)

It follows that ζ2 admits the Fourier expansion:

ζ2 =
∑
m

fmr
m/2 sin(mφ/2). (97)

Then ζ1 is given by integration of the Cauchy–Riemann equations:

ζ1 =
∑
m

fmr
m/2 cos(mφ/2). (98)

The condition (95) does not provide any further nontrivial constraints. While we have
not succeded in integration of equation (34) with such general ζ1 and ζ2, we still believe it is
of interest to find the solution for σ with particular but arbitrary m. Thus, we take only one
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(arbitrary) term from the series contained in (97) and (98). Upon integration of (34) we get
the following σ in an implicit form:

.

(
sin(mφ/2)

amrm/2
, σ (amr

m+2)

)
= .

(
s, σ

(
s

sin(mφ)/2

)2
)

= 0 (99)

where s = sin(mφ/2)/(amrm/2). In particular, σ may be a function of φ only. Thus we
realize that the family of dielectric functions σ compatible with the boundary conditions is
quite large. By ‘compatible’ we mean that the nontrivial symmetry generator admitted by the
boundary-value problem can be found.

We assume now that am = 1. The second variable t necessary to separate variables in the
Helmholtz equation is easily found:

t = −2r−m/2 cos(mφ/2)/m (100)

and u is written as a product of exp(ilt)f (s) to obtain the following simple differential equation
for f (s):

f ′′(s) + 4(k2
0σr

m+2 − l2)f (s) = 0 (101)

which again becomes an ordinary differential equation when σ · rm+2 is eliminated in favour of
s using (99). Of course, (101) should be solved with the boundary condition f (0) = 0 which,
together with the requirements of the proper behaviour at infinity, may introduce constraints
on the l and k0. The last equation of this section can be obviously analysed using standard
methods provided that a specific admissible dependence given by (99) of σ is substituted.

Let us now consider once again the example of the Maxwell fish-eye medium. In
section 3 we have derived the algebra of Lie symmetries for the Helmholtz equation with
σ = σ0/(1 + r2)2. We have shown that one of the generators, denoted by X1, contains the
operator of the formF(r) sin φ ∂

∂φ
. Therefore, the Dirichlet problem for the half-plane is indeed

invariant under X1, X1(φ)|φ=0 = X1(φ)|φ=2π = 0. This might be somewhat amazing since the
dielectric constant in the Maxwell fish-eye problem has radial dependence. Nevertheless, the
‘hidden’ symmetry of the Helmholtz equation with this dielectric constant makes it possible
to solve the conducting half-plane problem.

For φ = 0 and φ = 2π one has s = 0. Thus, the boundary condition requires that

f (s) = 0 for s = 0

where f (s) has to satisfy equation (60). It is more convenient to work, however, with the
function g(s) = f (s)/

√
1 − 4s2 which fulfils the simpler equation (66). The solution to this

equation is a linear combination of hypergeometric functions 2F1:

g(s) = 21/4k
√

1 − 4s2

[
2−|m|/2k−2|m|(1 − 4s2)−|m|

×A2F1(α − 4|m|, β − 4|m|, 1 − 2|m|, 1 − 4s2)

+2|m|/2k2|m|(1 − 4s2)|m|B2F1(α + 4|m|, β + 4|m|, 1 + 2|m|, 1 − 4s2)

]
(102)

where A and B are constants and we have put l = 2m, k = k0
√
σ0, α = ( 1

4 )(1 −
√

1 + k2),

β = ( 1
4 )(1 +

√
1 + k2).

To proceed, let us specify the allowed values of m. The variable ψ = 2t varies from −π

to π and has evidently the character of an angular variable. Thus, we should require that the
function exp(ilt) = exp(imψ) be the same if ψ approaches −π and π . This means that we
should consider only the integer values of m. We also observe that the collection of functions
{exp(imψ)}|∞m=−∞ constitutes an orthogonal and complete set in the interval (−π, π), and
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that, for given s, m must be an integer if we want exp(imψ) to be single-valued as a function
of φ when ψ is expressed back in terms of φ and r . We require the solution (102) to be regular
at both s = − 1

2 and s = 1
2 . Thus A must be equal to zero. The remaining term has to vanish

when s = 0. Evaluating the hypergeometric function at s = 0 we obtain

g(0) = B
π21/4(1+2|m|)k1+2|m|A(1 + 2|m|)

A( 1
4 (3 −

√
1 + k2 + 4|m|))A( 1

4 (3 +
√

1 + k2 + 4|m|))
. (103)

The only zeros of the above equation are those associated with the poles of one of the A

functions present in the denominator. Since the argument of one of them is always positive,
the only possibility is that

1
4

(
3 −

√
1 + k2 + 4|m|

)
= −n (104)

where n is any positive integer. Thus we have found a ‘quantization’ condition to be fulfilled
by k (and, consequently, by k0):

k =
√
(3 + 4|m| + 4n)2 − 1 (105)

which arises due to the boundary condition.
Thus, we have obtained the following representation of mode functions of the field which

satisfies both the regularity conditions and the boundary condition:

umn = exp(imψ)fmn(s) (106)

where s = r sin φ/(r2 + 1), ψ = 2 arctan[(r2 − 1)/(2r cosφ)], and

fmn(s) = 2|m|/2+1k2|m|+1
mn (1 − 4s2)|m|

2F1(− 1
2 (1 + 2n), 1 + 2|m| + n, 1 + 2|m|, 1 − 4s2) (107)

with n being positive and m arbitrary integers. The last formula has been obtained by
substitution of k = kmn given by equation (105) into (102). The integer number n specifies
the number of nodes of the function fmn(s) in any of the open intervals (− 1

2 , 0) or (0, 1
2 ).

Of course, in realistic arrangements the Maxwell fish-eye medium can fill only a small
part of the space. The solutions found here might serve, nevertheless, as partial ones valid in
some restricted spatial region.

6. Final remarks

In this work we have studied the Helmholtz equation with spatially dependent coefficients.
Symmetries of this equation have been found. The infinitesimal generator of the symmetry
has been expressed in terms of the real and imaginary parts of an analytical function.
Thus, a connection between planar electrostatic problems and the wave propagation in an
inhomogeneous media has been established. Several examples of the relation between the
infinitesimal generator of the symmetry and a family of corresponding admissible dielectric
functions have been given. The geometro-optical interpretation in terms of the Hamilton–
Jacobi equation for the eikonal functions and the corresponding Hamiltonian has been been
provided as part of several specific examples.

A Dirichlet boundary value problem for the half-plane in an inhomogeneous medium has
been considered and representations of the dielectric function for which the problem can be
solved, by using the symmetry methods, have been provided.

The problem under consideration admits extensions and/or completion in at least two
directions. On one hand, one may study the symmetries and solutions of boundary-value
problems of the stationary Maxwell equations for inhomogeneous media. It is also possible to
analyse the corresponding time-dependent problems. It is, however, quite clear that the case
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of two spatial dimensions is rather distinguished. Indeed, the conformal transformations of
the plane are much richer than their counterparts in three spatial dimensions. The ‘analytical
functions’ in three dimensions constitute just a subset of the set of polynomials of second order
in three variables x, y, z. Thus, while the problem of classification of the dielectric constants
admitting separation of variables in, say, 3D Helmholtz equations is much simpler than the
corresponding 2D problem touched in this work, the results are unlikely to be of interest.
One might speculate at this point that the richness of the complex analysis (or even the very
possibility of building it) in two dimensions is strictly connected with the symmetry of some
partial differential equations, namely the Laplace and Helmholtz ones. It is to be noted that
in 2D space–time one can also build a possibly very rich analysis—the hyperbolic complex
analysis. The investigations of symmetry with the help of hyperbolic analytical functions may
lead to interesting results in model (1 + 1)-dimensional systems including boundary-value
problems. However, there is no serious candidate for an equivalent of the variable-coefficient
Helmholtz equation in (1 + 1) space–time.

On the other hand, it would be possible and desirable (in the present author’s opinion)
to investigate the Helmholtz equation with spatially varying dielectric constants using the
apparatus of second-order symmetry operators, as has similarly been done by Miller [14] for
the case of constant σ . The number of interesting coordinate systems admitting separation of
variables for given σ can be substantially enlarged this way.
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